
Copyright © 2013 by John Wiley & Sons. All rights reserved.

INPUT/OUTPUT

AND EXCEPTION

HANDLING

CHAPTER

Slides by Donald W. Smith

TechNeTrain.com

7

Final Draft

10/30/2011

Chapter Goals

 To read and write text files

 To process command line arguments

 To throw and catch exceptions

 To implement programs that propagate

checked exceptions

In this chapter, you will learn how to write

programs that manipulate text files, a very

useful skill for processing real world data.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 2

Contents

 Reading and Writing Text Files

 Text Input and Output

 Command Line Arguments

 Exception Handling

 Application: Handling Input Errors

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 3

7.1 Reading and Writing Text Files

 Text Files are very commonly used to store

information

 Both numbers and words can be stored as text

 They are the most ‘portable’ types of data files

 The Scanner class can be used to read text files

 We have used it to read from the keyboard

 Reading from a file requires using the File class

 The PrintWriter class will be used to write text

files

 Using familiar print, println and printf tools

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 4

Text File Input

 Create an object of the File class
 Pass it the name of the file to read in quotes

 Then create an object of the Scanner class
 Pass the constructor the new File object

 Then use Scanner methods such as:
 next()
 nextLine()
 hasNextLine()
 hasNext()
 nextDouble()
 nextInt()...

File inputFile = new File("input.txt");

while (in.hasNextLine())
{

String line = in.nextLine();
// Process line;

}

Scanner in = new Scanner(inputFile);

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 5

Text File Output

 Create an object of the PrintWriter class
 Pass it the name of the file to write in quotes

• If output.txt exists, it will be emptied

• If output.txt does not exist, it will create an empty file

PrintWriter is an enhanced version of PrintStream

• System.out is a PrintStream object!

PrintWriter out = new PrintWriter("output.txt");

out.println("Hello, World!");
out.printf("Total: %8.2f\n", totalPrice);

System.out.println(“Hello World!”);

 Then use PrintWriter methods such as:
 print()

 println()

 printf()

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 6

Closing Files

 You must use the close method before file

reading and writing is complete
 Closing a Scanner

while (in.hasNextLine())
{

String line = in.nextLine();
// Process line;

}
in.close();

out.println("Hello, World!");
out.printf("Total: %8.2f\n", totalPrice);
out.close();

 Closing a PrintWriter

Your text may not be saved

to the file until you use the

close method!

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 7

Exceptions Preview

 One additional issue that we need to tackle:

 If the input or output file for a Scanner doesn’t

exist, a FileNotFoundException occurs when

the Scanner object is constructed.

 The PrintWriter constructor can generate this

exception if it cannot open the file for writing.

• If the name is illegal or the user does not have the

authority to create a file in the given location

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 8

Exceptions Preview

 Add two words to any method that uses File I/O

• Until you learn how to handle exceptions yourself

Copyright © 2011 by John Wiley & Sons. All rights reserved. Page 9

public static void main(String[] args) throws
FileNotFoundException

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;

public class LineNumberer
{

public void openFile() throws FileNotFoundException
{

. . .
}

}

And an important import or two..

 Exception classes are part of the java.io package

 Place the import directives at the beginning of the

source file that will be using File I/O and exceptions

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 10

Example: Total.java (1)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 11

More import statements

required! Some examples may

use import java.io.*;

Note the throws clause

Example: Total.java (2)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 12

Don’t forget to close the files

before your program ends.

Common Error 7.1

 Backslashes in File Names

 When using a String literal for a file name with path

information, you need to supply each backslash twice:

 A single backslash inside a quoted string is the escape

character, which means the next character is interpreted

differently (for example, ‘\n’ for a newline character)

 When a user supplies a filename into a program, the

user should not type the backslash twice

File inputFile = new File("c:\\homework\\input.dat");

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 13

Common Error 7.2

 Constructing a Scanner with a String

 When you construct a PrintWriter with a String, it writes

to a file:

 This does not work for a Scanner object

 It does not open a file. Instead, it simply reads through

the String that you passed (“input.txt”)

 To read from a file, pass Scanner a File object:

 or

PrintWriter out = new PrintWriter("output.txt");

Scanner in = new Scanner("input.txt"); // Error?

File myFile = new File("input.txt");
Scanner in = new Scanner(myFile);

Scanner in = new Scanner(new File (“input.txt”));

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 14

7.2 Text Input and Output

 In the following sections, you will learn how to

process text with complex contents, and you will

learn how to cope with challenges that often occur

with real data.

 Reading Words Example:

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 15

while (in.hasNext())
{

String input = in.next();
System.out.println(input);

}

Mary had a little lamb

Mary

had

a

little

lamb

input

output

Processing Text Input

 There are times when you want to read input by:
 Each Word

 Each Line

 One Number

 One Character

 Java provides methods of the Scanner and

String classes to handle each situation
 It does take some practice to mix them though!

Processing input is required for

almost all types of programs that

interact with the user.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 16

Reading Words
 In the examples so far, we have read text one line at a time

 To read each word one at a time in a loop, use:

 The Scanner object’s hasNext()method to test if there

is another word

 The Scanner object’s next() method to read one word

 Input: Output:

while (in.hasNext())
{

String input = in.next();
System.out.println(input);

}

Mary had a little lamb

Mary

had

a

little

lamb
Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 17

White Space

 The Scanner’s next() method has to decide

where a word starts and ends.

 It uses simple rules:
 It consumes all white space before the first character

 It then reads characters until the first white space

character is found or the end of the input is reached

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 18

White Space

 What is whitespace?
 Characters used to separate:

• Words

• Lines

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 19

“Mary had a little lamb,\n

her fleece was white as\tsnow”

Common White Space

‘ ‘ Space

\n NewLine

\r Carriage Return

\t Tab

\f Form Feed

The useDelimiter Method
 The Scanner class has a method to change the

default set of delimiters used to separate words.

 The useDelimiter method takes a String that lists all

of the characters you want to use as delimiters:

Scanner in = new Scanner(. . .);
in.useDelimiter("[^A-Za-z]+");

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 20

The useDelimiter Method

 You can also pass a String in regular expression format

inside the String parameter as in the example above.

 [^A-Za-z]+ says that all characters that ^not either A-
Z uppercase letters A through Z or a-z lowercase a

through z are delimiters.

 Search the Internet to learn more about regular

expressions.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 21

Scanner in = new Scanner(. . .);
in.useDelimiter("[^A-Za-z]+");

Reading Characters

 There are no hasNextChar() or nextChar()
methods of the Scanner class
 Instead, you can set the Scanner to use an ‘empty’

delimiter ("")

 next returns a one character String

 Use charAt(0) to extract the character from the String

at index 0 to a char variable

Scanner in = new Scanner(. . .);
in.useDelimiter("");

while (in.hasNext())
{

char ch = in.next().charAt(0);
// Process each character

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 22

Classifying Characters

 The Character class provides several useful

methods to classify a character:

 Pass them a char and they return a boolean

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 23

if (Character.isDigit(ch)) …

Reading Lines
 Some text files are used as simple databases

 Each line has a set of related pieces of information

 This example is complicated by:

• Some countries use two words

– “United States”

 It would be better to read the entire line and process it

using powerful String class methods

 nextLine() reads one line and consumes the ending ‘\n’

China 1330044605

India 1147995898

United States 303824646

while (in.hasNextLine())
{

String line = in.nextLine();
// Process each line

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 24

Breaking Up Each Line
 Now we need to break up the line into two parts

 Everything before the first digit is part of the country

 Get the index of the first digit with Character.isdigit

int i = 0;
while (!Character.isDigit(line.charAt(i))) { i++; }

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 25

Breaking Up Each Line

 Use String methods to extract the two parts

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 26

String countryName = line.substring(0, i);
String population = line.substring(i);
// remove the trailing space in countryName
countryName = countryName.trim();

trim removes white space at

the beginning and the end.

303824646

United States

Or Use Scanner Methods

 Instead of String methods, you can sometimes

use Scanner methods to do the same tasks
 Read the line into a String variable

• Pass the String variable to a new Scanner object

 Use Scanner hasNextInt to find the numbers

• If not numbers, use next and concatenate words

United States 303824646

Scanner lineScanner = new Scanner(line);

String countryName = lineScanner.next();
while (!lineScanner.hasNextInt())
{

countryName = countryName + " " + lineScanner.next();
}

Remember the

next method

consumes white

space.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 27

Converting Strings to Numbers

 Strings can contain digits, not numbers
 They must be converted to numeric types

 ‘Wrapper’ classes provide a parseInt method

String pop = “303824646”;
int populationValue = Integer.parseInt(pop);

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 28

‘3’ ‘0’ ‘3’ ‘8’ ‘2’ ‘4’ ‘6’ ‘4’ ‘6’

String priceString = “3.95”;
int price = Double.parseInt(priceString);

‘3’ ‘.’ ‘9’ ‘5’

Converting Strings to Numbers

 Caution:
 The argument must be a string containing only digits

without any additional characters. Not even spaces are

allowed! So… Use the trim method before parsing!

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 29

int populationValue = Integer.parseInt(pop.trim());

Safely Reading Numbers

 Scanner nextInt and nextDouble can get

confused
 If the number is not properly formatted, an “Input

Mismatch Exception” occurs

 Use the hasNextInt and hasNextDouble methods to

test your input first

 They will return true if digits are present
 If true, nextInt and nextDouble will return a value

 If not true, they would ‘throw’ an ‘input mismatch exception’

if (in.hasNextInt())
{

int value = in.nextInt(); // safe
}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 30

Reading Other Number Types

 The Scanner class has methods to test and read

almost all of the primitive types

 What is missing?
 Right, no char methods!

Data Type Test Method Read Method

byte hasNextByte nextByte

short hasNextShort nextShort

int hasNextInt nextInt

long hasNextLong nextLong

float hasNextFloat nextFloat

double hasNextDouble nextDouble

boolean hasNextBoolean nextBoolean

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 31

Mixing Number, Word and Line Input

 nextDouble (and nextInt…) do not consume

white space following a number

 This can be an issue when calling nextLine after

reading a number

 There is a ‘newline’ at the end of each line

 After reading 1330044605 with nextInt

• nextLine will read until the ‘\n’ (an empty String)

China

1330044605

India

while (in.hasNextInt())
{

String countryName = in.nextLine();
int population = in.nextInt();
in.nextLine(); // Consume the newline

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 32

Formatting Output

 Advanced System.out.printf

 Can align strings and numbers

 Can set the field width for each

 Can left align (default is right)

 Two format specifiers example:

 %-10s : Left justified String, width 10

 %10.2f : Right justified, 2 decimal places, width 10

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 33

System.out.printf("%-10s%10.2f", items[i] + ":", prices[i]);

printf Format Specifier

 A format specifier has the following structure:

 The first character is a %

 Next, there are optional “flags” that modify the format,

such as - to indicate left alignment. See Table 2 for the

most common format flags

 Next is the field width, the total number of characters in

the field (including the spaces used for padding),

followed by an optional precision for floating-point

numbers

 The format specifier ends with the format type,

such as f for floating-point values or s for strings.

See Table 3 for the most important formats

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 34

printf Format Flags

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 35

printf Format Types

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 36

7.3 Command Line Arguments

 Text based programs can be ‘parameterized’ by

using command line arguments
 Filename and options are often typed after the program

name at a command prompt:

 Java provides access to them as an array of Strings
parameter to the main method named args

 The args.length variable holds the number of args

 Options (switches) traditionally begin with a dash ‘-’

public static void main(String[] args)

>java ProgramClass -v input.dat

args[0]: "-v"
args[1]: "input.dat"

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 37

Caesar Cipher Example

 Write a command line program that uses character

replacement (Caesar cipher) to:

1) Encrypt a file provided input and output file names

2) Decrypt a file as an option

>java CaesarCipher input.txt encrypt.txt

>java CaesarCipher –d encrypt.txt output.txt

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 38

CaesarCipher.java (1)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 39

This method uses file I/O and

can throw this exception.

CaesarCipher.java (2)

If the switch is present, it is the

first argument

Call the usage method to

print helpful instructions

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 40

CaesarCipher.java (3)

Process the input file one

character at a time

Don’t forget the close the files!

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 41

Example of a ‘usage’ method

Steps to Processing Text Files

Read two country data files,

worldpop.txt and worldarea.txt.

Write a file world_pop_density.txt

that contains country names and

population densities with the country

names aligned left and the numbers

aligned right.
Afghanistan 50.56

Akrotiri 127.64

Albania 125.91

Algria 14.18

American Samoa 288.92

. . .

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 42

Steps to Processing Text Files

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 43

1) Understand the Processing Task

-- Process ‘on the go’ or store data and then process?

2) Determine input and output files

3) Choose how you will get file names

4) Choose line, word or character based input processing

-- If all data is on one line, normally use line input

5) With line-oriented input, extract required data

-- Examine the line and plan for whitespace, delimiters…

6) Use methods to factor out common tasks

Processing Text Files: Pseudocode

 Step 1: Understand the Task
 While there are more lines to be read

Read a line from each file
Extract the country name
population = number following the country name in

the line from the first file
area = number following the country name in the line

from the second file
If area != 0

density = population / area
Print country name and density

Afghanistan 50.56

Akrotiri 127.64

Albania 125.91

Algria 14.18

American Samoa 288.92

. . .

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 44

7.4 Exception Handling

 There are two aspects to dealing with run-time

program errors:
1) Detecting Errors

This is the easy part. You can ‘throw’ an exception

2) Handling Errors

This is more complex. You need to ‘catch’ each

possible exception and react to it appropriately

 Handling recoverable errors can be done:
 Simply: exit the program

 User-friendly: As the user to correct the error

Use the throw statement to

signal an exception

if (amount > balance)
{
// Now what?

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 45

Syntax 7.1: Throwing an Exception

 When you throw an exception, you are throwing an

object of an exception class
 Choose wisely!

 You can also pass a descriptive String to most exception

objects

When you throw an exception, the

normal control flow is terminated.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 46

Exception Classes

 Partial hierarchy of

exception classes

 More general are

above

 More specific are

below

 Darker are Checked

exceptions

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 47

Catching Exceptions

 Exceptions that are thrown must be ‘caught’
somewhere in your program Surround method calls

that can throw exceptions

with a ‘try block’.

Write ‘catch blocks’ for

each possible exception.

FileNotFoundException

NumberFormatException

NoSuchElementException

It is customary to name the

exception parameter either

‘e’ or ‘exception’ in the

catch block.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 48

Catching Exceptions
 When an exception is detected, execution ‘jumps’

immediately to the first matching catch block

 IOException matches both FileNotFoundException
and NoSuchElementException is not caught

FileNotFoundException

NoSuchElementException

NumberFormatException

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 49

Syntax 7.2: Catching Exceptions

 Some exception handling options:
 Simply inform the user what is wrong

 Give the user another chance to correct an input error

 Print a ‘stack trace’ showing the list of methods called

exception.printStackTrace();

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 50

Checked Exceptions

Checked exceptions are due to circumstances

that the programmer cannot prevent.

 Throw/catch applies to three

types of exceptions:
 Error: Internal Errors

• not considered here

 Unchecked: RunTime Exceptions
• Caused by the programmer

• Compiler does not check how you

handle them

 Checked: All other exceptions
• Not the programmer’s fault

• Compiler checks to make sure you

handle these

• Shown darker in Exception Classes

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 51

Syntax 7.3: The throws Clause

 Methods that use other methods that may throw
exceptions must be declared as such

 Declare all checked exceptions a method throws

 You may also list unchecked exceptions

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 52

The throws Clause (continued)

 If a method handles a checked exception internally, it

will no longer throw the exception.

• The method does not need to declare it in the throws clause

 Declaring exceptions in the throws clause ‘passes the

buck’ to the calling method to handle it or pass it along.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 53

The finally clause

 finally is an optional clause in a try/catch block
 Used when you need to take some action in a method

whether an exception is thrown or not.
• The finally block is executed in both cases

 Example: Close a file in a method in all cases

public void printOutput(String filename) throws IOException
{

PrintWriter out = new PrintWriter(filename);
try
{

writeData(out); // Method may throw an I/O Exception
}
finally
{

out.close();
}

}

Once a try block is entered, the

statements in a finally clause are

guaranteed to be executed, whether

or not an exception is thrown.

Copyright © 2013 John Wiley & Sons. All rights reserved. Page 54

Syntax 7.4: The finally Clause

 Code in the finally block is always executed

once the try block has been entered

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 55

Programming Tip 7.1

 Throw Early

 When a method detects a problem that it

cannot solve, it is better to throw an exception

rather than try to come up with an imperfect fix.

 Catch Late

 Conversely, a method should only catch an

exception if it can really remedy the situation.

 Otherwise, the best remedy is simply to have

the exception propagate to its caller, allowing it

to be caught by a competent handler.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 56

Programming Tip 7.2

 Do Not Squelch Exceptions

 When you call a method that throws a checked

exception and you haven’t specified a handler,

the compiler complains.

 It is tempting to write a ‘do-nothing’ catch

block to ‘squelch’ the compiler and come back

to the code later. Bad Idea!

• Exceptions were designed to transmit problem

reports to a competent handler.

• Installing an incompetent handler simply hides an

error condition that could be serious..

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 57

Programming Tip 7.3

 Do not use catch and finally in the

same try block

 The finally clause is executed

whenever the try block is exited in

any of three ways:

1. After completing the last statement of

the try block

2. After completing the last statement of a

catch clause, if this try block caught an

exception

3. When an exception was thrown in the

try block and not caught

try

catch

finally

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 58

Programming Tip 7.3
 It is better to use two (nested) try clauses to

control the flow

try

catch

finally

try
{
PrintWriter out = new PrintWriter(filename);
try
{ // Write output }
finally
{ out.close(); } // Close resources

}
catch (IOException exception)
{
// Handle exception

}

try

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 59

7.5 Handling Input Errors
 File Reading Application Example

 Goal: Read a file of data values
• First line is the count of values

• Remaining lines have values

 Risks:

• The file may not exist
– Scanner constructor will throw an exception

– FileNotFoundException

• The file may have data in the wrong format
– Doesn’t start with a count

» NoSuchElementException

– Too many items (count is too low)

» IOException

3

1.45

-2.1

0.05

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 60

Handling Input Errors: main
 Outline for method with all exception handling
boolean done = false;
while (!done)
{
try
{
// Prompt user for file name
double[] data = readFile(filename); // May throw exceptions
// Process data
done = true;

}
catch (FileNotFoundException exception)
{ System.out.println("File not found."); }
catch (NoSuchElementException exception)
{ System.out.println("File contents invalid."); }
catch (IOException exception)
{ exception.printStackTrace(); }

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 61

Handling Input Errors: readFile

 Calls the Scanner constructor

 No exception handling (no catch clauses)

 finally clause closes file in all cases (exception or not)

 throws IOException (back to main)

public static double[] readFile(String filename) throws IOException
{

File inFile = new File(filename);
Scanner in = new Scanner(inFile);
try
{

return readData(in); // May throw exceptions
}
finally
{

in.close();
}

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 62

Handling Input Errors: readData

 No exception handling (no try or catch clauses)

 throw creates an IOException object and exits

 unchecked NoSuchElementException can occur

public static double[] readData(Scanner in) throws IOException
{

int numberOfValues = in.nextInt(); // NoSuchElementException
double[] data = new double[numberOfValues];
for (int i = 0; i < numberOfValues; i++)
{

data[i] = in.nextDouble(); // NoSuchElementException
}
if (in.hasNext())
{

throw new IOException("End of file expected");
}
return data;

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 63

Summary: Input/Output

 Use the Scanner class for reading text files.

 When writing text files, use the PrintWriter class

and the print/println/printf methods.

 Close all files when you are done processing them.

 Programs that start from the command line receive

command line arguments in the main method.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 64

Summary: Processing Text Files

 The next method reads a string that is delimited

by white space.

 The Character class has methods for classifying

characters.

 The nextLine method reads an entire line.

 If a string contains the digits of a number, you use

the Integer.parseInt or Double.parseDouble
method to obtain the number value.

 Programs that start from the command line

receive the command line arguments in the main
method.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 65

Summary: Exceptions (1)
 To signal an exceptional condition, use the throw

statement to throw an exception object.

 When you throw an exception, processing

continues in an exception handler.

 Place statements that can cause an exception

inside a try block, and the handler inside a catch
clause.

 Checked exceptions are due to external

circumstances that the programmer cannot

prevent.
 The compiler checks that your program handles these

exceptions.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 66

Summary: Exceptions (2)
 Add a throws clause to a method that can throw

a checked exception.

 Once a try block is entered, the statements in a

finally clause are guaranteed to be executed,

whether or not an exception is thrown.

 Throw an exception as soon as a problem is

detected.

 Catch it only when the problem can be handled.

 When designing a program, ask yourself what

kinds of exceptions can occur.

 For each exception, you need to decide which part

of your program can competently handle it.
Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 67

